摘要

A hybrid phase-sensitive optical time domain reflectometry (Phi-OTDR) and Brillouin optical time domain reflectometry (B-OTDR) system which can realize simultaneous measurement of both dynamic vibration and static strain is proposed. Because the Rayleigh scattering light and spontaneous Brilliouin scattering light are naturally frequency-multiplexed, the heterodyne asynchronous demodulation of frequency shift keying (FSK) in optical fiber communications is utilized, and the demodulations of the two scattering signals are synchronized. In addition, the forward Raman amplification is introduced to the system, which not only makes up for the deficiency of spontaneous Brilliouin scattering based distributed fiber sensor, but also has the merit of the single end measurement of B-OTDR. The designed Phi/B-OTDR hybrid system has the sensing range of 49 km with 10 m spatial resolution. The vibration and strain experiments show that this hybrid system has great potential for use in long-distance structural health monitoring.