摘要

The study set out to determine the potential for commercially available preparations of black cohosh (Actaea racemosa), chaste tree berry (Vitex agnus-castus), crampbark (Viburnum opulus) and false unicorn (Chamaelirium luteum) to inhibit the major human drug metabolizing enzymes CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A4 as well as CYP1A1 which activates some carcinogens. In vitro microplate-based assays using cDNA-expressed CYP450 isoforms and fluorogenic substrates were used. Components of the commercial herbal preparations interfered with the assays and limited the concentration ranges that could be tested. Nevertheless, the fluorogenic assays were robust, reproducible and easy to perform and thus are still useful for initial screening for potential herb-drug interactions. None of the preparations affected CYPs 1A1 or 2C9 at the concentrations tested but all preparations inhibited some of the enzymes with potencies around 1 mu g/mL. The three most potent interactions were: chaste tree berry and CYP2C19 (IC50 0.22 mu g/mL,); chaste tree berry and CYP3A4 (IC50 0.3 mu g/mL); black cohosh and CYP2C19 (IC50 0.37 mu g/mL,). Thus, the study successfully identified the potential for the commercial herbal preparations to inhibit human drug metabolizing enzymes. Whether this potential translates into clinically significant herb-drug interactions can only be confirmed by appropriate in vivo studies.

  • 出版日期2011-7