0 Citations
0 Reads
An in vivo rodent model of contraction-induced injury in the quadriceps muscle
Pratt Stephen J P
Lawlor Michael W
Shah Sameer B
Lovering Richard M
Injury-International Journal of the Care of the Injured, 2012, 43(6): 788-793.
Most animal studies of muscle contractile function utilise the anterior or posterior crural muscle (dorsiflexors and plantarflexors, respectively). An advantage to using these muscles is that the common fibular and tibial nerves are readily accessible, while the small size of the crural muscles is a disadvantage. Working with small muscles not only makes some in vivo imaging and the muscle testing techniques more challenging, but also provides limited amounts of tissue to study. The purpose of this study was to describe a new animal muscle injury model in the quadriceps that results in a significant and reproducible loss of force. The thigh of Sprague Dawley rats (N = 5) and C57BL/10 mice (N = 5) was immobilised and the ankle was attached to a custom-made lever arm. The femoral nerve was stimulated using subcutaneous electrodes and injury was induced using 50 lengthening ("eccentric'') contractions through a 70 degrees arc of knee motion. This protocol produces a significant and reproducible injury, with comparable susceptibility to injury in the rats and mice. This novel model shows that the quadriceps muscle provides a means to study whole muscle contractility, injury, and recovery in vivo. In addition to the usual benefits of an in vivo model, the larger size of the quadriceps facilitates in vivo imaging and provides a significant increase in the amount of tissue available for histology and biochemistry studies. A controlled muscle injury in the quadriceps also allows one to study a muscle, with mixed fibre types, which is extremely relevant to gait in humans and quadruped models.
Skeletal muscle; Injury; Quadriceps
Select Groups
Select Contacts
swap_vert Order by date
Order by date Order by name