摘要

The present work compares the performance of a mixed oxide ceramic tool in dry and air-cooled turning of grey cast iron. First, the study was done in the range of process parameters where dry turning provided satisfactory performance. The contours of surface roughness and tool life were generated with the help of trained neural networks. A novel procedure of neural network training is used in this work. The study was extended to the range in which dry turning performed poorly in terms of tool life. Tool wear, surface roughness of the machined job and forces and vibration during the cutting were studied. It was observed that air-cooling significantly reduces the tool wear at high cutting speed. At higher cutting speeds, where the dry turning performs very poorly, the air-cooled turning provides an improved surface finish also apart from the reduction in tool wear. In all the cases, the cutting and feed forces get reduced in air-cooling. Thus, air-cooled turning of grey cast iron with mixed oxide ceramic tools offers a promising environment-friendly option.

  • 出版日期2007-7-23