摘要

Spatially developing processes in supersonic streamwise vortices were numerically simulated at Mach number 5.0. The vortex evolution largely depended on the azimuthal vorticity thickness of the vortices, which governs the negative helicity profile. Large vorticity thickness greatly enhanced the centrifugal instability, with consequent development of perturbations with competing wavenumbers outside the vortex core. During the transition process, supersonic streamwise vortices could generate large-scale spiral structures and a number of hairpin like vortices. Remarkably, the transition caused a dramatic increase in the total fluctuation energy of hypersonic flows, because the negative helicity profile destabilizes the flows due to helicity instability. Unstable growth might also relate to the correlation length between the axial and azimuthal vorticities of the streamwise vortices. The knowledge gained in this study is important for realizing effective fuel-oxidizer mixing in supersonic combustion engines.

  • 出版日期2015-3