Assessing relationships between Radarsat-2 C-band and structural parameters of a degraded mangrove forest

作者:Kovacs John M*; Jiao Xianfeng; Flores de Santiago Francisco; Zhang Chunhua; Flores Verdugo Francisco
来源:International Journal of Remote Sensing, 2013, 34(20): 7002-7019.
DOI:10.1080/01431161.2013.813090

摘要

Relationships were assessed between mangrove structural data (leaf area index (LAI), stem density, basal area, diameter at breast height (DBH)) collected from 61 stands located in a black mangrove (Avicennia germinans)-dominated forest and both single polarized ultra-fine (3m) and multipolarized fine beam (8m) Radarsat-2 C-band synthetic aperture radar (SAR) data. The stands examined included representatives from the four types of mangroves that typify this degraded system, specifically: predominantly dead mangrove, poor-condition mangrove, healthy dwarf mangrove, and tall healthy mangrove. The results indicate that the selection of the spatial resolution (3m vs. 8m) of the incidence angle (27-39 degrees) and the polarimetric mode greatly influence the relationship between the SAR and mangrove structural data. Moreover, the extent of degradation, i.e. whether dead stands are considered, also determines the strength of the relationships between the various SAR and mangrove parameters. When dead stands are included, the strongest overall relationships between the ultra-fine backscatter (incidence angle of approximate to 32 degrees) and the various structural parameters were found using the horizontal-horizontal (HH) polarization/horizontal-vertical (HV) polarization ratio. However, if the dead stands are not included, then significant relationships with the ultra-fine data were only calculated with the HH data. Similar results were observed using the corresponding incidence angle (approximate to 33 degrees) of the fine beam data. When a shallower incidence angle was considered (approximate to 39 degrees), fewer and weaker relationships were calculated. Moreover, no significant relationships were observed if the dead stands were excluded from the sample at this incidence angle. The highest correlation coefficients using the steepest incidence (approximate to 27 degrees) were found with the co-polarized (HH, vertical-vertical (VV) polarization) modes. Several polarimetric parameters (entropy, pedestal height, surface roughness, alpha angle) based on the decomposition of the scattering matrix of the fine beam mode at this incidence angle were also found to be significantly correlated to mangrove structural data. The highest correlation (R=0.71) was recorded for entropy and LAI. When the dead stands were excluded, volume scattering was found to be the most significant polarimetric parameter. Finally, multiple regression models, based on texture measures derived from both the grey level co-occurrence matrix (GLCM) and the sum and difference histogram (SADH) of the ultra-fine data, were developed to estimate mangrove parameters. The results indicate that only models derived from the HH data are significant and that several of these were strong predictors of all but stem density.

  • 出版日期2013-10-20