摘要

This paper reports a new meshless Integrated Radial Basis Function Network (IRBFN) approach to the numerical simulation of interfacial flows in which the two-way interaction between a moving interface and the ambient viscous flow is fully investigated. When an interface between two immiscible fluids moves, not only its position and shape but also the flow variables (i.e. velocity field and pressure) change due to the presence of surface tension along the moving interface. The velocity field of the ambient flow, on the other hand, causes the interface to move and deform as a result of momentum transport between the two immiscible fluids on both sides of the interface. Numerical investigations of such a two-way interaction is reported in this paper where the level set method is used in combination with high-order projection schemes in the meshless framework of the IRBFN method. Numerical investigations on the meshless projection schemes are performed with typical benchmark incompressible viscous flow problems for verification purposes. The approach is then demonstrated with the numerical simulation of two bubbles moving, stretching and merging in an incompressible ambient fluid under the action of buoyancy force.

  • 出版日期2014-12-1

全文