Nanoparticle Design Optimization for Enhanced Targeting: Monte Carlo Simulations

作者:Wang Shihu; Dormidontova Elena E*
来源:Biomacromolecules, 2010, 11(7): 1785-1795.
DOI:10.1021/bm100248e

摘要

Using computer simulations, we systematically studied the influence of different design parameters of a spherical nanoparticle tethered with monovalent ligands on its efficiency of targeting planar cell surfaces containing mobile receptors. We investigate how the nanoparticle affinity can be affected by changing the binding energy, the percent of functionalization by ligands, tether length, grafting density, and nanoparticle core size. In general, using a longer tether length or increasing the number of tethered chains without increasing the number of ligands increases the conformational penalty for tether stretching/compression near the cell surface and leads to a decrease in targeting efficiency. At the same time, using longer tethers or a larger core size allows ligands to interact with receptors over a larger cell surface area, which can enhance the nanoparticle affinity toward the cell surface. We also discuss the selectivity of nanoparticle targeting of cells with a high receptor density. Based on the obtained results, we provide recommendations for improving the nanoparticle binding affinity and selectivity, which can guide future nanoparticle development for diagnostic and therapeutic purposes.

  • 出版日期2010-7-12