摘要

The tropical rain belt is a narrow band of clouds near the equator, where the most intense rainfall on the planet occurs. On seasonal timescales, the rain moves across the equator following the Sun, resulting in wet and dry seasons in the tropics. The position of the tropical rain belt also varies on longer timescales. Through the latter half of the twentieth century, for example, shifts in tropical rainfall have been associated with severe droughts, including the African Sahel and Amazon droughts. Here I show that climate models project a northward migration of the tropical rain belt through the 21st century, with future anthropogenic aerosol reductions driving the bulk of the shift. Models that include both aerosol indirect effects yield significantly larger northward shifts than models that lack aerosol indirect effects. Moreover, the rate of the shift corresponds to the rate of the decrease of anthropogenic aerosol emissions across different time periods and future emission scenarios. This response is consistent with relative warming of the Northern Hemisphere, a decrease in northward cross-equatorial moist static energy transport, and a northward shift of the Hadley circulation, including the tropical rain belt. The shift is relatively weak in the Atlantic sector, consistent with both a smaller decrease in aerosol emissions and a larger reduction in northward cross-equatorial ocean heat flux. Although aerosol effects remain uncertain, I conclude that future reductions in anthropogenic aerosol emissions may be the dominant driver of a 21st century northward shift of the tropical rain belt.

  • 出版日期2015-9-27