摘要

Amorphous polymers lack an organized microstructure, yet they exhibit structural evolution, where physical properties change with time, temperature, and inelastic deformation. To describe the influence of structural evolution on the mechanical behavior of amorphous polymers, we developed a thermomechanical theory that introduces the effective temperature as a thermodynamic state variable representing the nonequilibrium configurational structure. The theory couples the evolution of the effective temperature and internal state variables to describe the temperature-dependent and rate-dependent inelastic response through the glass transition. We applied the theory to model the effect of temperature, strain rate, aging time, and plastic pre-deformation on the uniaxial compression response and enthalpy change with temperature of an acrylate network. The results showed excellent agreement with experiments and demonstrate the ability of the effective temperature theory to explain the complex thermomechanical behavior of amorphous polymers.

  • 出版日期2015-9