A Comparison of Corn (Zea mays L.) Residue and Its Biochar on Soil C and Plant Growth

作者:Calderon Francisco J*; Benjamin Joseph; Vigil Merle F
来源:PLos One, 2015, 10(4): e0121006.
DOI:10.1371/journal.pone.0121006

摘要

In order to properly determine the value of charring crop residues, the C use efficiency and effects on crop performance of biochar needs to be compared to the un-charred crop residues. In this study we compared the addition of corn stalks to soil, with equivalent additions of charred (300 degrees C and 500 degrees C) corn residues. Two experiments were conducted: a long term laboratory mineralization, and a growth chamber trial with proso millet plants. In the laboratory, we measured soil mineral N dynamics, C use efficiency, and soil organic matter (SOM) chemical changes via infrared spectroscopy. The 300 degrees C biochar decreased plant biomass relative to a nothing added control. The 500 degrees C biochar had little to no effect on plant biomass. With incubation we measured lower soil NO3 content in the corn stalk treatment than in the biochar-amended soils, suggesting that the millet growth reduction in the stalk treatment was mainly driven by N limitation, whereas other factors contributed to the biomass yield reductions in the biochar treatments. Corn stalks had a C sequestration use efficiency of up to 0.26, but charring enhanced C sequestration to values that ranged from 0.64 to 1.0. Infrared spectroscopy of the soils as they mineralized showed that absorbance at 3400, 2925-2850, 1737 cm(-1), and 1656 cm(-1) decreased during the incubation and can be regarded as labile SOM, corn residue, or biochar bands. Absorbances near 1600, 15001420, and 1345 cm(-1) represented the more refractory SOM moieties. Our results show that adding crop residue biochar to soil is a sound C sequestration technology compared to letting the crop residues decompose in the field. This is because the resistance to decomposition of the chars after soil amendment offsets any C losses during charring of the crop residues.

  • 出版日期2015-4-2

全文