摘要

We have developed a set of orientational restraint potentials for solid-state NMR observables including (15)N chemical shift and (15)N-(1)H dipolar coupling. Torsion angle molecular dynamics simulations with available experimental (15)N chemical shift and (15)N-(1)H dipolar coupling as target values have been performed to determine orientational information of four membrane proteins and to model the structures of some of these systems in oligomer states. The results suggest that incorporation of the orientational restraint potentials into molecular dynamics provides an efficient means to the determination of structures that optimally satisfy the experimental observables without an extensive geometrical search.

  • 出版日期2008-7
  • 单位上海生物信息技术研究中心