摘要

Unit-pockmarks were recognized as more-or-less insignificant features on the seafloor in the early 1980s. However, this investigation, at four different regions in Norwegian waters, suggests they are more significant for seep detection than previously believed. They occur as circular depressions in the seafloor (diameter < 5 m) either as singular features, as strings, or as clusters. One of our main conclusions is that they are widespread and represent the most recent and most active local seep locations. This is based on their areal density distribution, the finding of relatively high hydrocarbon concentrations inside sampled unit-pockmarks and at locations where they are abundant, and on theoretical considerations. When unit-pockmarks occur together with 'normal-sized' pockmarks, they often form to the side of the normal-pockmark centre. Our study also suggests that (1) the driving force behind seafloor hydraulic activity, i.e., the formation of unit-pockmarks, normal-pockmarks, and many other fluid flow features, is pockets of buried free gas, and (2) whereas unit-pockmarks likely manifest cyclic pore-water seepage, their larger related, normal-pockmarks, likely manifest periodic or intermittent gas bursts (eruptions), with extended intervening periods of slow, diffusive, and cyclic pore-water seepage. Our findings suggest that seep detection is most efficiently performed by mapping the seafloor with high-resolution bathymetry (at least 1 m x 1 m gridding), and acquiring geochemical samples where the density of unit-pockmarks is locally highest.

  • 出版日期2010-6