摘要

Analytical decision making strategies rely on weighing pros and cons of multiple options in an unbounded rationality manner. Contrary to these strategies, recognition primed decision (RPD) model which is a primary naturalistic decision making (NDM) approach assumes that experienced and professional decision makers when encounter problems in real operating conditions are able to use their previous experiences and trainings in order to diagnose the problem, recall the appropriate solution, evaluate it mentally, and implement it to handle the problem in a satisficing manner. In this paper, a computational form of RPD, now called C-RPD, is presented. Unified Modeling Language was used as a modeling language to represent the proposed C-RPD model in order to make the implementation easy and obvious. To execute the model, RoboCup Rescue agent simulation environment, which is one of the best and the most famous complex and multi-agent large-scale environments, was selected. The environment simulates the incidence of fire and earthquakes in urban areas where it is the duty of the police forces, firefighters and ambulance teams to control the crisis. Firefighters of SOS team are first modeled and implemented by utilizing C-RPD and then the system is trained using an expert%26apos;s experience. There are two evaluations. To find out the convergence of different versions developed during experience adding, some of the developed versions are chosen and evaluated on seven maps. Results show performance improvements. The SOS team ranked first in an official world championship and three official open tournaments.

  • 出版日期2012-3-15