摘要

Naturally occurring biomaterial scaffolds derived from extracellular matrix (ECM) have been the topic of recent investigation in the context of rotator cuff tendon repair. We previously reported a method to treat fascia ECM with high molecular weight tyramine substituted-hyaluronan (TS-HA) for use as a tendon augmentation scaffold. The presence of crosslinked TS-HA in fascia was associated with an increased macrophage and giant cell response compared to water-treated controls after implantation in a rat abdominal wall model. The objective of this study was to determine the extent to which TS-HA treatment was associated with mechanical property changes of fascia after implantation in the rat model. Fascia samples in all groups demonstrated time-dependent decreases in mechanical properties. TS-HA-treated fascia with crosslinking exhibited a lower toe modulus, a trend toward lower toe stiffness, and a higher transition strain than water-treated controls not only after implantation, but also at time zero. TS-HA treatment, with or without crosslinking, had no significant effect on time-zero or post-implantation load relaxation ratio, load relaxation rate, linear-region stiffness, or linear-region modulus. Our findings demonstrated that the particular TS-HA treatment employed in this study decreased the low-load elastic mechanical properties of fascia ECM, in keeping with the heightened macrophage and giant cell host response seen previously. This work provides a starting point and guidance for investigating alternative HA treatment strategies.

  • 出版日期2012-3