Atomically Thin Mica Flakes and Their Application as Ultrathin Insulating Substrates for Graphene

作者:Castellanos Gomez Andres*; Wojtaszek Magdalena; Tombros Nikolaos; Agrait Nicolas; van Wees Bart J; Rubio Bollinger Gabino
来源:Small, 2011, 7(17): 2491-2497.
DOI:10.1002/smll.201100733

摘要

By mechanical exfoliation, it is possible to deposit atomically thin mica flakes down to single-monolayer thickness on SiO(2)/Si wafers. The optical contrast of these mica flakes on top of a SiO(2)/Si substrate depends on their thickness, the illumination wavelength, and the SiO(2) substrate thickness, and can be quantitatively accounted for by a Fresnel-law-based model. The preparation of atomically thin insulating crystalline sheets will enable the fabrication of ultrathin, defect-free insulating substrates, dielectric barriers, or planar electron-tunneling junctions. Additionally, it is shown that few-layer graphene flakes can be deposited on top of a previously transferred mica flake. Our transfer method relies on viscoelastic stamps, as used for soft lithography. A Raman spectroscopy study shows that such an all-dry deposition technique yields cleaner and higher-quality flakes than conventional wet-transfer procedures based on lithographic resists.

  • 出版日期2011-9-5