摘要

Rotor instability is one of the most serious problems of high-speed rotors supported by sliding bearings. With constantly increasing parameters, new machines problems with rotor instability are encountered more and more often. Even though there are many solutions based on passive improvement of the bearing geometry to enlarge the operational speed range of the journal bearing, the paper deals with a working prototype of a system for the active vibration control of journal bearings with the use of piezoactuators. The controllable journal bearing is a part of a test rig, which consists of a rotor driven by an inductive motor up to 23,000 rpm. The actively controlled journal bearing consists of a movable bushing, which is actuated by two piezoactuators. The journal vibration is measured by a pair of proximity probes. The control system enables run-up, coast-down and steady-state rotation. A real-time simulator dSpace encloses the control loop. Force produced by piezoactuators and acting at the bushing is controlled according to error signals derived from the proximity probe output signals. As it was proved by experiments the active vibration control extends considerably the range of the operational speed.

  • 出版日期2013-4