Achieving low-emissivity materials with high transmission for broadband radio-frequency signals

作者:Liu, Liu; Chang, Huiting; Xu, Tao; Song, Yanan; Zhang, Chi; Hang, Zhi Hong*; Hu, Xinhua*
来源:Scientific Reports, 2017, 7(1): 4840.
DOI:10.1038/s41598-017-04988-9

摘要

The use of low-emissivity (low-e) materials in modern buildings is an extremely efficient way to save energy. However, such materials are coated by metallic films, which can strongly block radio-frequency signals and prevent indoor-outdoor wireless communication. Here, we demonstrate that, when specially-designed metallic metasurfaces are covered on them, the low-e materials can remain low emissivity for thermal radiation and allow very high transmission for a broad band of radio-frequency signals. It is found that the application of air-connected metasurfaces with subwavelength periods is critical to the observed high transmission. Such effects disappear if periods are comparable to wavelengths or metal-connected structures are utilized. The conclusion is supported by both simulations and experiments. Advantages such as easy to process, low cost, large-area fabrication and design versatility of the metasurface make it a promising candidate to solve the indoor outdoor communication problem.