摘要

Zr-containing Ti alloys have widely been developed owing to the infinite solid solubility of Zr in Ti and its avirulence, leading respectively to high strength and good biocompatibility. It is known that the Zr addition gives rise to grain refinement when rolled Ti-Zr alloys are annealed; nevertheless, the governing mechanism by which Zr addition in Ti can reduce grain size is not fully understood. In this study, the grain growth behaviour of rolled Zr-free and Zr-containing (Ti-10Zr, wt.%) alloys is analysed using analytical transmission electron microscopy and the classical and Bons-Azuma methods by evaluating the grain growth exponent. Irrespective of the evaluation technique and Zr content, the grain growth exponent is found to be close to similar to 0.3, indicating the occurrence of normal grain growth in the Zr-free alloy and solute drag mechanism in the Zr-containing alloy. It is found that the grain size and grain growth rate are significantly reduced by Zr segregation near grain boundaries, resulting from the solute drag mechanism.

  • 出版日期2015-12-2