摘要

This paper presents a novel divide-and-integrate strategy based approach for solving large scale job-shop scheduling problems. The proposed approach works in three phases. First, in contrast to traditional job-shop scheduling approaches where optimization algorithms are used directly regardless of problem size, priority rules are deployed to decrease problem scale. These priority rules are developed with slack due dates and mean processing time of jobs. Thereafter, immune algorithm is applied to solve each small individual scheduling module. In last phase, integration scheme is employed to amalgamate the small modules to get gross schedule with minimum makespan. This integration is carried out in dynamic fashion by continuously checking the preceding module's machine ideal time and feasible slots (satisfying all the constraint). In this way, the proposed approach will increase the machine utilization and decrease the makespan of gross schedule. Efficacy of the proposed approach has been tested with extremely hard standard test instances of job-shop scheduling problems. Implementation results clearly show effectiveness of the proposed approach.

全文