摘要

Fluorescence pharmacokinetic rates in tissues can provide additional specific and quantitative physiological and pathological information for evaluating organ function. This modality requires a highly sensitive diffuse fluorescence tomography (DFT) working in dynamic way to finally extract the pharmacokinetic rates from the measured pharmacokinetics-associated temporally varying boundary intensity, normally with the support of a priori anatomy. This paper is devoted to study pharmacokinetics of indocyanine green (ICG) in mouse liver based on synergistic dynamic-DFT and X-ray computer tomography (XCT): A highly sensitive dynamic DFT system of CT-scanning mode working with parallel 4 photomultiplier-tube photon-counting channels generates informative and instantaneous sampling datasets; An XCT system provides priori information of the target localization for improvement of the reconstruction quality; An analysis procedure extracts the pharmacokinetic rates from the reconstructed ICG concentration-time curves, using the Gauss-Newton scheme for fitting to a 2-compartment model. The uptake and excretion rates of ICG which were obtained in livers of 10 healthy mice in the in vivo experiments can be used to quantitatively evaluate liver function. The results can validate the effectiveness of both the imaging measurements system and pharmacokinetic analysis method.