摘要

The theory of stabilizer quantum error correction allows us to actively stabilize quantum states and simulate ideal quantum operations in a noisy environment. It is critical to correctly diagnose noise from its syndrome and nullify it accordingly. However, hardware that performs quantum error correction itself is inevitably imperfect in practice. Here, we show that stabilizer codes possess a built-in capability to correct errors not only on quantum information but also on faulty syndromes extracted by themselves. Shor's syndrome extraction for fault-tolerant quantum computation is naturally improved. This opens a path to realizing the potential of stabilizer quantum error correction hidden within an innocent-looking choice of generators and stabilizer operators that have been deemed redundant.

  • 出版日期2014-12-1