摘要

A bottleneck for genetic research and breeding of crop plants is the time taken to producing large pure line segregating populations so called recombinant inbred lines (RILs). One way to overcome this problem is through use of the single-seed-decent (SSD) process under in vitro conditions. A number of factors that may affect in vitro SSD approach of wheat including temperature, light duration and intensity, salt strength and carbohydrate concentration were investigated in this study. Under the in vitro conditions, 45 days per generation was achieved for an early flowering wheat genotype Emu Rock, allowing eight generations per annum; 58 days per generation was achieved for mid flowering genotypes, allowing six generations per annum. The results showed that a variation of growth environment before and after three-leaf stage allowed in vitro seed-set with a relatively short generation time. Specifically, the plantlets were first grown under 22 A degrees C with a light intensity of 145 mu mol m(-2) s (-1) (16 h d(-1)) for 20 days (around three-leaf stage), and then moved to an environment of 28 A degrees C and 500 mu mol m(-2) s(-1) (20 h d(-1)) light. The culture medium was 1/2 strength Murashige and Skoog (MS) with modification of adding ten times of extra KH2PO4 and 4% sucrose. The fully in vitro protocol resulted in 100% flowering rate and average seed set rate of 91.5% in Emu Rock and Zippy. It can be further fine-tuned to suit different genotypes and it has a potential for factory scale mass-production of RILs for genetic studies and practical breeding programs.