摘要

German cockroaches (Blattella germanica L.) have significant impacts on human health, most notably they are implicated as causes of childhood asthma. Gel bait formulations of fipronil, a phenylpyrazole insecticide, have been in use for German cockroach control in the United States since 1998. Previously, dieldrin resistant German cockroach strains were shown to have 7- to 17-fold cross-resistance to fipronil. More recently, a field-collected strain (GNV-R) displayed approximate to 36-fold resistance to topically applied fipronil at the LD(50) level, which is the highest level of fipronil resistance reported to date in the German cockroach. The aim of the current research was to identify mechanism(s) responsible for high-level fipronil resistance in the GNV-R strain. Synergist bioassays conducted using topical and injection application methods implicated cytochrome P450-mediated detoxification in resistance. Electrophysiological recordings using the suction-electrode technique revealed the nervous system of the GNV-R strain is insensitive to fipronil. In agreement with electrophysiology results, the alanine to serine (A302S) mutation encoded by the gamma-amino butyric acid-gated chloride channel subunit gene resistance to dieldrin, which confers limited cross-resistance to fipronil, was detected in 95% of GNV-R strain individuals. Logistic regression analysis showed that A302S mutation frequency correlates with neurological insensitivity as shown by electrophysiology data. Overall, results of synergism bioassays, electrophysiological recordings, and A302S mutation frequency measurements suggest that fipronil resistance in the GNV-R strain is caused by the combined effects of enhanced metabolism by cytochrome P450s and target-site insensitivity caused by the A302S-encoding mutation in the resistance to dieldrin gene.

  • 出版日期2012-1