摘要

Numerical algorithms for two-dimensional (2D) ductile multilayer folding are used (1) to unfold synthetically generated multilayer folds and natural multilayer folds in turbidites on the SW coast of Portugal and (2) to test how 2D ductile multilayer folding may generate collapsed hinges. A series of dynamic retro-deformation experiments with different viscosity ratios, rheological flow laws, boundary conditions and initial geometries were able to restore digitized, natural multilayer folds to flat layers, except one particular collapsed hinge with closed limbs (i.e. no matrix material left between limbs). Consistently, 2D forward simulations of ductile multilayer folding produced always omega-shaped hinges with matrix material remaining stuffed between limbs. These numerical results suggested that 2D reverse ductile unfolding cannot retro-deform the fully closed, collapsed hinge. Having observed that one limb of this collapsed fold is ruptured, with a measured gap of about 4.9 m, additional calculations were made with implementation of this amount of stretching. Results were not more satisfactory. Since omega-shaped folds exist in other places in the field area, we concluded that in this specific case shales were likely squeezed out from the hinge in the third dimension, parallel to the fold axis. Dynamic retro-deformations indicate that the effective viscosity ratio between inter-layered quartzwackes and shales was between 25 and 100 during folding. They further point out where 3D flow and possibly fracturing were effective during folding. This work demonstrates the constructive feedback between numerical tests and field data and that dynamic retro-deformation offers rheological constraints that geometric retro-deformation of geological sections cannot provide.

  • 出版日期2010-10-29