Angle resolved characterization of nanostructured and conventionally textured silicon solar cells

作者:Davidsen Rasmus Schmidt*; Ormstrup Jeppe; Ommen Martin Lind; Larsen Peter Emil; Schmidt Michael Stenbaek; Boisen Anja; Nordseth Ornulf; Hansen Ole
来源:Solar Energy Materials and Solar Cells, 2015, 140: 134-140.
DOI:10.1016/j.solmat.2015.04.001

摘要

We report angle resolved characterization of nanostructured and conventionally textured silicon solar cells. The nanostructured solar cells are realized through a single step, mask-less, scalable reactive ion etching (RIE) texturing of the surface. Photovoltaic properties including short circuit current, open circuit voltage, fill factor (FF) and power conversion efficiency are each measured as function of the relative incident angle between the solar cell and the light source. The relative incident angle is varied from 0 degrees to 90 degrees in steps of 10 degrees in orthogonal axes, such that each solar cell is characterized at 100 different angle combinations. The angle resolved photovoltaic properties are summarized in terms of the average, angle-dependent electrical power output normalized to the power output at normal incidence and differently textured cells on different silicon substrates are compared in terms of angle resolved performance. The results show a 3% point improvement in average electrical power output normalized with respect to normal incidence power output of RIE textured, multicrystalline Si cells compared to conventional multicrystalline Si cells and above 1% point improvement of RIE textured monocrystalline Si cells compared to conventional monocrystalline Si cells.

  • 出版日期2015-9