Noise-Gated Encoding of Slow Inputs by Auditory Brain Stem Neurons With a Low-Threshold K+ Current

作者:Gai Yan*; Doiron Brent; Kotak Vibhakar; Rinzel John
来源:Journal of Neurophysiology, 2009, 102(6): 3447-3460.
DOI:10.1152/jn.00538.2009

摘要

Gai Y, Doiron B, Kotak V, Rinzel J. Noise-gated encoding of slow inputs by auditory brain stem neurons with a low-threshold K+ current. J Neurophysiol 102: 3447-3460, 2009. First published October 7, 2009; doi:10.1152/jn.00538.2009. Phasic neurons, which do not fire repetitively to steady depolarization, are found at various stages of the auditory system. Phasic neurons are commonly described as band-pass filters because they do not respond to low-frequency inputs even when the amplitude is large. However, we show that phasic neurons can encode low-frequency inputs when noise is present. With a low-threshold potassium current (I-KLT), a phasic neuron model responds to rising and falling phases of a subthreshold low-frequency signal with white noise. When the white noise was low-pass filtered, the phasic model also responded to the signal's trough but still not to the peak. In contrast, a tonic neuron model fired mostly to the signal's peak. To test the model predictions, whole cell slice recordings were obtained in the medial (MSO) and lateral (LSO) superior olivary neurons in gerbil from postnatal day 10 (P10) to 22. The phasic MSO neurons with strong I-KLT, mostly from gerbils aged P17 or older, showed firing patterns consistent with the preceding predictions. Moreover, injecting a virtual I-KLT into weak-phasic MSO and tonic LSO neurons with putative weak or no I-KLT (from gerbils younger than P17) shifted the neural response from the signal's peak to the rising phase. These findings advance our knowledge about how noise gates the signal pathway and how phasic neurons encode slow envelopes of sounds with high-frequency carriers.

  • 出版日期2009-12