摘要

This study is motivated by the attempt to characterize failure modes of silicon chips commonly used in electronic industries. Previous experimental investigations provided the failure probability of dies made of a single-crystal and produced a large variety of crack patterns, but were not able to elucidate the link between defect distributions and crack initiation and propagation. To get some insight in the fracture activation and propagation mechanisms, we resort to finite element analyses and adopt an explicit methodology for crack tracking, based on the self-adaptive insertion of cohesive elements into a coherent mesh of solid elements. Finite kinematics material models with anisotropic features for both bulk and cohesive surfaces are employed to describe the behavior of single-crystal silicon plates undergoing a particular bending test up to failure. The cohesive model adopted in the calculation is fully anisotropic and newly formulated to accomplish the present study. Numerical simulations considering different material properties were able to ascertain the effects of particular flaws on failure modes of brittle silicon plates.

  • 出版日期2011-6