摘要

In this study, the synthesis and characterization of a novel nano-porous superabsorbent hydrogel with high water swelling capacity is described. A nano-porous hydrogel was prepared by employing (2-dimethylaminoethyl) methacrylate (PDMAEMA) as a pH sensitive monomer and sodium alginate (SA) as a water soluble polysaccharide under gamma-ray irradiation. The polymerization reaction was performed at room temperature in the absence of chemically toxic crosslinking agent and initiators. The interactive parameters including biopolymer backbone concentration, monomer concentration and gamma-irradiation dose were selected as major factors in the synthesis of superabsorbent and three levels for each factor were applied to obtain the highest water swelling according to the central composite design (CCD) method. According to the results of nine different tests which were derived by CCD method, the optimum conditions were determined. The results showed that the hydrogel prepared at concentration of 1.5 g SA, 2.1 mol/L PDMAEMA and at a radiation dose of 5 kGy displayed the highest swelling capacity. In continuation, the effect of salt, pH, and particle size on the swelling behavior of the obtained samples was investigated. We found that the swelling of the optimized sample first increased and then dropped with increases in pH from 2 to 12 and the maximum water absorbency was observed at pH 7. Finally, different techniques such as Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and scanning electron microscope (SEM) were applied for the characterization of optimized nano-porous hydrogel.

  • 出版日期2012-12