摘要

The best parameters for incorporation into mechanistic physiologically based pharmacokinetic models for transporters are system-independent kinetic parameters and active (not total) transporter levels. Previously, we determined the elementary rate constants for P-glycoprotein (P-gp)-mediated transport (on-and off-rate constants from membrane to P-gp binding pocket and efflux rate constant into the apical chamber) using the structural mass action kinetic model in confluent MDCKII-hMDR1-NKI cell monolayers. In the present work, we extended the kinetic analysis to Caco-2 cells for the first time and showed that the elementary rate constants are very similar compared with MDCKII-hMDR1-NKI cells, suggesting they primarily depend on the interaction of the compound with P-gp and are therefore mostly independent of the in vitro system used. The level of efflux active (not total) P-gp is also fitted by our model. The estimated level of efflux active P-gp was 5.0 6 1.4-fold lower in Caco-2 cells than in MDCKII-hMDR1-NKI cells. We also kinetically identified the involvement of a basolateral uptake transporter for both digoxin and loperamide in Caco-2 cells, as found previously in MDCKII-hMDR1-NKI cells, due to their low passive permeability. This demonstrates the value of our P-gp structural model as a diagnostic tool in detecting the importance of other transporters, which cannot be unambiguously done by the Michaelis-Menten approach. The system-independent elementary rate constants for P-gp obtained in vitro are more fundamental parameters than those obtained using Michaelis-Menten steady-state equations. This suggests they will be more robust mechanistic parameters for incorporation into physiologically based pharmacokinetic models for transporters.

  • 出版日期2017-2