摘要

This study was designed to investigate the denitrification characteristics of Pseudomonas stutzeri F11 under different environmental conditions and to evaluate the effect of these characteristics on nitrogen removal and the water microbiome in an experimental grass carp aquaculture system. The results showed that the optimal growth conditions of strain F11 were (1) ammonia-nitrogen (N), nitrite-N, or nitrate-N as sole N source; (2) initial ammonia-N concentration of 10-30 mg N/l; (3), initial nitrite-N concentration of 200 mg N/l; (4) sodium citrate as carbon source; (5) rotation (r) speed of 200 r/min; a C:N ratio of between 2 and 10; (6) culture at 32-37 A degrees C. The addition of P. stutzeri F11 to the experimental grass carp aquaculture system reduced the levels of ammonia-N, nitrite-N, and total N in the water over an extended range, but had no effect on nitrate-N level. Results of the 454 pyrosequencing analysis indicated that the structure of the microbial community in the aquaculture water changed significantly after the addition of P. stutzeri F11 preparations. The addition of P. stutzeri F11 to the aquaculture system also altered the microbiome metabolism in the water, especially the bacteria involved in nitrogen metabolism. These results suggest that the addition of P. stutzeri F11 to an experimental grass carp aquaculture system decrease nitrogen levels and alter the microbial community structure of the water; as such, this bacterial strain could be a potential candidate for the regulation of water quality in aquaculture systems.