Here We Are, But Where Do We Go? A Systematic Review of Crustacean Transcriptomic Studies from 2014-2015

作者:Havird Justin C; Santos Scott R
来源:Integrative and Comparative Biology, 2016, 56(6): 1055-1066.
DOI:10.1093/icb/icw061

摘要

Despite their economic, ecological, and experimental importance, genomic resources remain scarce for crustaceans. In lieu of genomes, many researchers have taken advantage of technological advancements to instead sequence and assemble crustacean transcriptomes de novo. However, there is little consensus on what standard operating procedures are, or should be, for the field. Here, we systematically reviewed 53 studies published during 2014-2015 that utilized transcriptomic resources from this taxonomic group in an effort to identify commonalities as well as potential weaknesses that have applicability beyond just crustaceans. In general, these studies utilized RNA-Seq data, both novel and publicly available, to characterize transcriptomes and/or identify differentially expressed genes (DEGs) between treatments. Although the software suite Trinity was popular in assembly pipelines and other programs were also commonly employed, many studies failed to report crucial details regarding bioinformatic methodologies, including read mappers and the utilized parameters in identifying and characterizing DEGs. Annotation percentages for assembled transcriptomic contigs were low, averaging 32% overall. While other metrics, such as numbers of contigs and DEGs reported, correlated with the number of sequence reads utilized per sample, these did reach apparent saturation with increasing sequencing depth. Most disturbingly, a number of studies (55%) reported DEGs based on non-replicated experimental designs and single biological replicates for each treatment. Given this, we suggest future RNA-Seq experiments targeting transcriptome characterization conduct deeper (i.e., 50-100 M reads) sequencing while those examining differential expression instead focus more on increased biological replicates at shallower (i.e., similar to 10-20 M reads/sample) sequencing depths. Moreover, the community must avoid submitting for review, or accepting for publication, nonreplicated differential expression studies. Finally, mining the ever growing publicly available transcriptomic data from crustaceans will allow future studies to focus on hypothesis-driven research instead of continuing to simply characterize transcriptomes. As an example of this, we utilized neurotoxin sequences from the recently described remipede venom gland transcriptome in conjunction with publicly available crustacean transcriptomic data to derive preliminary results and hypotheses regarding the evolution of venom in crustaceans.

  • 出版日期2016-12