Mapping resistance to spot blotch in a CIMMYT synthetic-derived bread wheat

作者:Zhu Zhanwang; Bonnett David*; Ellis Marc; Singh Pawan; Heslot Nicolas; Dreisigacker Susanne; Gao Chunbao; Mujeeb Kazi A
来源:Molecular Breeding, 2014, 34(3): 1215-1228.
DOI:10.1007/s11032-014-0111-6

摘要

Spot blotch, caused by Cochliobolus sativus, is an important foliar disease of wheat in warmer wheat-growing regions leading to significant reductions in grain yield and quality. Although inoculum levels can be reduced by planting disease-free seed, treatment of plants with fungicides and crop rotation, genetic resistance is likely to be a robust, economical and environmentally friendly tool in the control of spot blotch. The spot blotch resistant synthetic derivative 'SYN1' was developed from a cross between two resistance sources, Mayoor and the primary synthetic bread wheat Tksn1081/Ae. squarrosa (222) that are likely to form an important component of resistance in many elite CIMMYT bread wheats. In order to map the loci underlying the resistance of 'SYN1', a doubled-haploid population produced from a cross between 'SYN1' and the susceptible CIMMYT-derived variety Ocoroni-86 was evaluated in artificially inoculated field nurseries in the 2010-2011 and 2011-2012 crop seasons at CIMMYT's research station in Agua Fria, Mexico. Disease assessment was performed on three or four occasions and subsequently area under disease progress curve (AUDPC) calculated. Genotyping was with genotyping by sequencing and simple sequence repeat markers. Using inclusive composite interval mapping, three genomic regions were found to have a significant effect on spot blotch AUDPC in each of the 2 years of trials with phenotypic variation explained by QSb.cim-1B of 8.5 %, 17.6 % by QSb.cim-3B and 12.3 % by QSb.cim-5A. The quantitative trait loci (QTL) mapping results showed that the favorable alleles of QSb.cim-1B, QSb.cim-3B and QSb.cim-5A were derived from the synthetic-derived bread wheat SYN1. Genotypes of the parents of SYN1 indicated that the favorable alleles at these three QTLs were all inherited from Mayoor.

  • 出版日期2014-10
  • 单位湖北省农业科学院