摘要

The rational design of environmentally sensitive small molecule fluorophores with superior photophysical properties is critical for fluorimetry based biosensing. Herein, we have developed a new donor-acceptor fluorophore for quantitative detection of Human Serum Albumin (HSA) in aqueous samples. The fluorophore was easily prepared by Knoevenagel condensation, and showed excellent photophysical properties and positive solvatochromism. The design of the fluorophore was based on a nitrogen donor-pi-conjugation-nitrile acceptors (D-pi-A) to preserve efficient intramolecular charge transfer and long-wavelength emission. The fluorophore showed remarkable "turn-on" fluorescence in presence of HSA, which led to quantitative determination of the protein in aqueous buffer samples. Structure and electronic properties of the fluorophore played important roles on the superior HSA sensing ability. The findings indicate that minor changes in design strategy can be advantageous while developing long wavelength (far red or near infrared) emitting fluorophores for biosensing and bioimaging.

  • 出版日期2018-8-1