ANGIOGENESIS INHIBITOR ENDOSTATIN PROTECTS MICE WITH SEPSIS FROM MULTIPLE ORGAN DYSFUNCTION SYNDROME

作者:Peng, Yue; Gao, Min; Jiang, Yu; Wang, Kangkai; Zhang, Huali; Xiao, Zihui; Ou, Hao; Yang, Bingchang; Yang, Mingshi*; Xiao, Xianzhong
来源:Shock, 2015, 44(4): 357-364.
DOI:10.1097/SHK.0000000000000427

摘要

Endostatin is an endogenous inhibitor of vascular endothelium. It can inhibit endothelial cell migration, proliferation, and vascular angiogenesis and is mainly used for anticancer therapy. We have previously found that endostatin is an important node protein in the pathogenesis of sepsis. However, its impacts on sepsis have not yet been reported. We established a septic mouse model using cecal ligation and puncture (CLP) and gave the mice either endostatin or placebo (saline). The effects of endostatin on serum enzyme, Evans blue leakage, lung wet-to-dry weight ratio, and cytokine (tumor necrosis factor a, interleukin 1 beta [IL-1 beta], and IL-6) production were assessed. Survival rates were observed for up to 3 days. In addition, we examined the effects of endostatin on serum vascular endothelial growth factor A (VEGF-A), VEGF-C, and pathological changes and scores of lung tissues as well as the phosphorylation of JNK, p38, and ERKl/2 proteins in lung tissues of mice with sepsis. We found that endostatin can increase the survival of septic mice in a time-and dose-dependent manner probably by reducing multiorgan dysfunctions shown by serum indicators, morphologic changes, Evans blue leakage, wet-to-dry weight ratio, and inflammation of lung tissues. In addition, endostatin could reduce serum tumor necrosis factor alpha, IL-1 beta, IL-6, and VEGF-C levels in septic mice as well as inhibit phosphorylation of p38 and ERK1/2 in lung tissues of septic mice. This is the first study demonstrating the protective effect of endostatin on sepsis and its possible underlying mechanisms from the aspects of inhibiting inflammatory responses, blocking VEGF receptor, attenuating VEGF-C expression, and reducing vascular permeability. Overall, the study revealed the potential protect role for endostatin in the treatment of sepsis.