摘要

In this paper an attempt has been made to correlate the structural modifications and luminescence efficiencies by changing the environment of the glass network by modifying oxides. Sm3+ doped lead borate (SPB) and lead cadmium alumina borate (SCPB) glasses have been fabricated by melt quench technique at high temperature. The glass samples are characterized by XRD, FUR, optical absorptions, fluorescence and density measurements. The effect of Sm3+ ion and glass host interaction on the emission spectra has been discussed in the view of the ionicity and covalency of hosts. The ratio of the intensities of electric to magnetic dipole emissions are calculated by varying both the concentration of the Sm3+ ion and the composition of the glass matrix. The XRD profile of all the glasses confirms their amorphous nature and FTIR spectrum shows the presence of BO3 and BO4 groups. These glasses have shown strong absorption bands in the visible (VIS and NIR) region and emit strong orange red wavelengths when excited by ultraviolet light. The concentration quenching has been noticed and ascribed to energy transfer through cross-relaxation between Sm3+ ions. Shifting of UV absorption edge towards longer wavelength with addition of Sm2O3 concentration has been observed. Intorporation of Al2O3 and CdO in 2nd glass system is responsible for strong effect on luminescence of the present glass system. Based on these results, an attempt has been made to throw some light on the relationship between the structural modifications and luminescence efficiencies in two different glass hosts as a laser active medium in the visible region. Moreover the optical basicity values were theoretically determined along with covalent behavior of two glass systems.

  • 出版日期2015-9