摘要

The dynamical complexity and stochastic resonance (SR) of a time-delayed asymmetric bistable system are studied. Firstly, The effective potential function and steady-state probability density function are deduced based on Born-Oppenheimer approximation theory, and we find that the asymmetric item and time-delayed feedback item can both affect the curve of these two functions, especially the asymmetric item can induce phase displacement. Secondly, the mean first-passage time (MFPT) which plays an important role in research on particles escape rate is derived and we obtain an approximate asymmetric item r which can maintain a steady MFPT. Finally, the influences of different parameters on SR are researched by signal-to-noise ratio (SNR). The analytic expression of SNR is derived and three dimensional graphs and contour maps of SNR with different parameters are obtained. The results indicate that time delay tau and time delay strength e can enhance the SNR and the asymmetric item r has a non-monotone effect on SNR. Notably, adjusting time delay strength e is more sensitive than that of the time delay tau in controlling SR.