摘要

Numerical simulations of the tandem-system flow are widely conducted because of the complex interactions of the configuration. The cavitation phenomenon is an important factor that affects the hydrofoil in tandem. In this paper, we developed a new parameter for the Kunz preconditioner based on the local cavitation volume fraction. To assess this parameter, a type of Fourier footprint analysis and numerical test of the hydrofoil are adopted. The preconditioning method is also conducted in hydrofoil turbulent cavitation flows with RANS turbulence models, to prove that this method has good stability and convergence. Based on this, a tandem Clark-Y hydrofoil configuration is investigated. The results show that the distance of components has a strong influence on the cavitation and lift coefficient of the tandem hydrofoils. Therefore, the purpose of this study is to provide guidance on the design of marine vehicles that have tandem configurations.