摘要

To more fully Lake advantage of a low-cost, small footprint hybrid interferometric/dispersive spectrometer, a mathematical reconstruction technique was developed to accurately capture the high-resolution and relative peak intensities from complex spectral patterns. A Fabry-Perot etalon was coupled to a Czemy-Turner spectrometer, leading to increased spectral resolution by more than an order of magnitude without the commensurate increase in spectrometer size. Measurement or the industry standard Hg 313.1555/313.1844 rim doublet yielded a ratio of 0.682, which agreed well with an independent measurement and literature values. The doublet separation (29 pm) is similar to the U isotope shift (25 pm) at 424.437 rim that is of interest to monitoring nuclear nonproliferation activities. Additionally, the technique was applied to LIBS measurement of the mineral cinnabar (Hgs) and resulted in a ratio of 0.682. This reconstruction method could enable significantly smaller, portable high-resolution instruments with isotopic specificity, benefiting a variety of spectroscopic applications.

  • 出版日期2015-12-15