A Comparison of the Plastic-Flow Response of a Powder-Metallurgy Nickel-Base Superalloy Under Nominally-Isothermal and Transient-Heating Hot-Working Conditions

作者:Semiatin S L*; Mahaffey D W; Tung D J; Zhang W; Senkov O N
来源:Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science, 2017, 48A(4): 1864-1879.
DOI:10.1007/s11661-016-3907-7

摘要

The flow-stress behavior at hot-working temperatures and strain rates of the powder-metallurgy superalloy LSHR was determined under nominally-isothermal and transient-heating conditions. Two conventional methods, compression of right-circular cylinders and torsion of thin-walled tubes, were used for isothermal tests. A direct-resistance-heating technique utilizing torsion of round-bar specimens in a Gleeble(A (R)) machine was applied for both isothermal and transient-heating conditions. When expressed in terms of effective stress and strain, baseline data determined by the two conventional methods showed good agreement. With the aid of a flow-localization analysis to assess the confounding influence of axial (and radial) temperature gradients on deformation uniformity, the flow stresses determined from nominally-isothermal Gleeble(A (R)) torsion tests were shown to be broadly similar to those from the conventional tests. With regard to transient phenomena, Gleeble(A (R)) tests were also useful in quantifying the effect of rapid heating and short soak time on the observed higher flow stress associated with a metastable microstructure. The present work also introduces two new test techniques using direct-resistance-heated torsion specimens. One involves continuous heating under constant-torque conditions, and the other comprises testing an individual specimen at a series of temperatures and strain rates. Using a single specimen, the former method enabled the determination of the apparent activation energy for plastic flow, which was similar to that determined from the series of isothermal tests; the latter provided a low-cost, high-throughput approach to quantify the flow behavior.

  • 出版日期2017-4