摘要

Polymer solar cells (PSCs) offer great potential for fabrication of large-area, lightweight, and flexible organic solar cells by using low-cost printing and coating technologies. The power-conversion efficiencies have improved from 3% to almost 10% in recent years. Despite the advance on polymer solar cells performance, long-term stability is a primary area of concern for PSCs. However, it is highly challenging to develop PSC that can achieve high PCE while maintaining excellent ambient stability of the device. Recently, crosslinkable materials are widely used in the field of organic optical device, especially in polymer solar cells. Using these materials as donor, acceptor, or for fabrication of ordered bulk heterojunction, the stability and power-conversion efficiencies will be enhanced. And when these materials are applied to electron transport layer and hole transport layer, the power-conversion efficiencies, stability, fill factor, short-circuit current and other parameters will be correspondingly improved simultaneously. In the paper, the influence of crosslinkable materials to photoelectric performance is described in detail according to their diverse functions for polymer solar cells, such as the kind of functional groups, treatment time, temperature, initiator. At the same time, the research progress of crosslinkable materials utilizing as buffer layer or for fabrication of ordered bulk heterojunction polymer solar cell is discussed. Finally, we look forward to its development prospects in this field.