摘要

MicroRNAs (miRNAs/miRs) regulate the expression of target genes and are considered to be associated with human cancer. The aim of the present study was to screen novel miRNA biomarkers in esophageal cancer (EC). The miRNA expression profile GSE41268 was extracted from Gene Expression Omnibus database, and differentially expressed miRNAs between whole saliva samples from patients with EC and healthy controls were identified using the Linear Models for Microarray Data package. Then, the targets of these miRNAs were screened using the miRecords database and used to construct the regulatory network. Gene ontology and pathway enrichment analyses were performed for the target genes of differentially expressed miRNAs to predict their potential functions. A total of 18 differentially expressed miRNAs were identified in saliva samples from patients with EC, and 43 validated target genes corresponding to 7 upregulated miRNAs were identified. Then, 6 miRNAs (miR-144, miR-451, miR-98, miR-10b, miR-486-5p and miR-363) and their target genes were used to construct a regulatory network. Within the network, miR-144 may target Notch homolog 1, fibrinogen a chain and fibrinogen beta chain; miR-451 may regulate murine thymoma viral oncogene homolog 1, matrix metalloproteinase (MMP) 9 and MMP2; miR-98 may directly target E2F transcription factor (E2F) 1, E2F2 and v-myc avian myelocytomatosis viral oncogene homolog (MYC); miR-10b may modulate peroxisome proliferator-activated receptor a and Kruppel-like factor 4; miR-485-5p and miR-363 may regulate TNF receptor superfamily member 5 and cyclin-dependent kinase inhibitor 1A. In addition, E2F1, E2F2 and MYC were associated with the cell cycle, which was the most significantly enriched function and pathway in EC. The results of the present study suggested that miR-144, miR-451, miR-98, miR-10b and miR-363 may be involved in EC by regulating their target genes, and may be used as biomarkers for EC.