摘要

During early urinary tract infection (UTI) the interplay between invading bacteria and the urothelium elicits a mucosal response aimed at clearing infection. Unfortunately, the resultant inflammation and associated local tissue injury are responsible for patient symptoms. Interleukin-6 (IL-6), a cytokine released during acute UTI, has both pro-and anti-inflammatory effects on other body systems. Within the urothelium, the IL-6 native-tissue origin, the target cell type(s), and ultimate effect of the cytokine on target cells are largely unknown. In the present study we modeled the UTI IL-6 response ex vivo using canine bladder mucosa mounted in Ussing chambers to determine the inflammatory and reparative role of IL-6. We demonstrated that uropathogenic Escherichia coli infection stimulates the synthesis of IL-6 by all urothelial cell layers, with the urothelial cells alone representing the only site of unequivocal IL-6 receptor expression. Autocrine effects of IL-6 were supported by the activation of urothelial STAT3 signaling and SOCS3 expression. Using exogenous IL-6, a microarray approach, and quantitative reverse transcriptase PCR (q-RT-PCR), 5 target genes (tumor necrosis factor alpha, interleukin-1 beta, matrix metallopeptidase 2, heparan sulfate D-glucosaminyl 3-O-sulfotransferase 3A1, and hyaluronan synthase 2) that have direct or indirect roles in promoting a proinflammatory state were identified. Two of these genes, heparan sulfate D-glucosaminyl 3-O-sulfotransferase 3A1 and hyaluronan synthase 2, are also potentially important mediators of wound repair via the production of glycosaminoglycan components. These findings suggest that IL-6 secretion during acute UTI may serve a dual biological role by initiating the inflammatory response while also repairing urothelial defenses.

  • 出版日期2011-2