摘要

Purpose: Hypofractionated radiation therapy (hRT) combined with immune checkpoint blockade can induce T-cellemediated local and abscopal antitumor effects. We had previously observed peak levels of tumor-infiltrating lymphocytes (TILs) between days 5 and 8 after hRT. Because TILs are regarded as radiosensitive, hRT schedules extending into this period might be less immunogenic, prompting us to compare clinically relevant, short and extended schedules with equivalent biologically effective doses combined with anti-programmed cell death 1 (PD1) antibody treatment. Methods and Materials: In mice bearing 2 B16-CD133 melanoma tumors, the primary tumor was irradiated with 3 x 9.18 Gy in 3 or 5 days or with 5 x 6.43 Gy in 10 days; an anti-PD1 antibody was given weekly. The mice were monitored for tumor growth and survival. T-cell responses were determined on days 8 and 15 of treatment. The role of regional lymph nodes was studied by administering FTY720, which blocks lymph node egress of activated T cells. Tumor growth measurements after combination treatment using short or extended hRT and control treatment were also performed in the wild-type B16 melanoma and 4T1 breast carcinoma models. Results: In the B16-CD133 model, growth inhibition of irradiated primary and nonirradiated secondary tumors and overall survival were similar with all 3 hRT/anti-PD1 combinations, superior to hRT and anti-PD1 monotherapy, and was strongly dependent on CD8(+) T cells. TIL infiltration and local and systemic tumor-specific CD8(+) T-cell responses were also similar, regardless of whether short or extended hRT was used. Administration of FTY720 accelerated growth of both primary and secondary tumors, strongly reduced their TIL infiltration, and increased tumor-specific CD8(+) T cells in the lymph nodes draining the irradiated tumor. In the 4T1 model, local and abscopal tumor control was also similar, regardless of whether short or extended hRT was used, although the synergy between hRT and anti-PD1 was weaker. No synergies were found in the B16 wild-type model lacking an exogenous antigen. Conclusions: Our data suggest that combination therapy with hRT schedules extending into the period during which treatment-induced T cells infiltrate the irradiated tumor can provoke local and systemic antitumor effects similar to those with therapy using shorter schedules, if the regional lymph nodes supply sufficient tumor-specific T cells. This has implications for planning clinical RT/immune checkpoint blockade trials.