摘要

The peculiar experimental inelastic electron tunneling spectra of a series of hexadecanethiol molecular junctions have finally been reproduced by first-principles simulations. It is found that the debated spectral profile around 0.38 eV indeed originated from the C-H stretching vibration associated with at least two terminal methylene groups close to the sulfur atom. The intensity of this spectral peak becomes dominant, as observed in the experiments when the molecule is titled -40 degrees relative to the normal of the electrode surface, which is due to the opening of a new tunneling pathway bypassing the end sulfur atom. The dependence of this strong vibrational feature on the titled angle of the molecule is predicted with the help of the concept of effective coupling energy. The degree of the fluorination on the inelastic electron tunneling spectrum of hexadecanethiol molecules has also been discussed in detail.