摘要

Broadband optical and narrowband Si XIII X-ray images of the young Galactic supernova remnant Cassiopeia A (Cas A) obtained over several decades are used to investigate spatial and temporal emission correlations on both large and small angular scales. The data examined consist of optical and near-infrared ground-based and Hubble Space Telescope images taken between 1951 and 2011, and of X-ray images from Einstein, ROSAT, and Chandra taken between 1979 and 2013. We find weak spatial correlations between the remnant's X-ray and optical emission features on large scales, but several cases of good optical/X-ray correlations on small scales for features which have brightened due to recent interactions with the reverse shock. We also find instances (1) where a time delay is observed between the appearance of a feature's optical and X-ray emissions, (2) of displacements of several arcseconds between a feature's X-ray and optical emission peaks, and (3) of regions showing no corresponding X-ray or optical emissions. To explain this behavior, we propose a highly inhomogeneous density model for Cas A's ejecta consisting of small, dense optically emitting knots (n similar to 10(2-3) cm(-3)) and a much lower density (n similar to 0.1-1 cm(-3)) diffuse X-ray emitting component often spatially associated with optical emission knots. The X-ray emitting component is sometimes linked to optical clumps through shock-induced mass ablation generating trailing material leading to spatially offset X-ray/optical emissions. A range of ejecta densities can also explain the observed X-ray/optical time delays since the remnant's approximate to 5000 km s(-1) reverse shock heats dense ejecta clumps to temperatures around 3 x 10(4) K relatively quickly, which then become optically bright while more diffuse ejecta become X-ray bright on longer timescales. Highly inhomogeneous ejecta as proposed here for Cas A may help explain some of the X-ray/optical emission features seen in other young core-collapse supernova remnants.

  • 出版日期2014-7-10