Seasonal reflectance dynamics of common understory types in a northern European boreal forest

作者:Rautiainen Miina*; Mottus Matti; Heiskanen Janne; Akujarvi Anu; Majasalmi Titta; Stenberg Pauline
来源:Remote Sensing of Environment, 2011, 115(12): 3020-3028.
DOI:10.1016/j.rse.2011.06.005

摘要

The influence of the seasonal cycle of boreal forest understory has been noticed in global remote sensing of vegetation, especially in remote sensing of biophysical properties (e.g. leaf area index) of the tree-layer in a forest. A general problem in the validation of operationally produced global biophysical vegetation products is the lack of ground reference data on the seasonal variability of different land surface types. Currently, little is known about the spectral properties of the understory layers of boreal forests, and even less is known about the seasonal dynamics of the spectra. In this paper, we report seasonal trajectories of understory reflectance spectra measured in a European boreal forest. Four study sites representing different forest fertility site types were selected from central Finland. The understory composition was recorded and its spectra measured with an ASD FieldSpec Hand-Held UV/VNIR Spectroradiometer ten times during the growing period (from May to September) in 2010. Our results show that the spectral differences between and within understory types are the largest at the peak of the growing season in early July whereas in the beginning and end of the growing season (i.e. early May and late September, respectively) the differences between the understory types are marginal. In general, the fertile sites had the brightest NIR spectra throughout the growing season whereas infertile types appeared darker in NIR. Our results also indicated that a mismatch in the seasonal development of understory and tree layers does not occur in boreal forests: the understory and tree layer vegetation develop at a similar pace in the spring (i.e. there are no or only few spring ephemerals present), and the forests with the strongest seasonal dynamics in tree canopy structure (LAI) have also the strongest dynamics in understory spectra.

  • 出版日期2011-12-15