Asymmetry in the neutrino and anti-neutrino reactions in a nuclear medium

作者:Cheoun Myung Ki*; Choi Ki Seok; Kim K S; Saito Koichi; Kajino Toshitaka; Tsushima Kazuo; Maruyama Tomoyuki
来源:Physics Letters B, 2013, 723(4-5): 464-469.
DOI:10.1016/j.physletb.2013.05.050

摘要

We study the effect of the density-dependent axial and vector form factors on the electron-neutrino (nu(e)) and anti-neutrino ((nu) over bar (e)) reactions for a nucleon in nuclear matter or in C-12. The nucleon form factors in free space are presumed to be modified for a bound nucleon in a nuclear medium. We adopt the density-dependent form factors calculated by the quark-meson coupling (QMC) model, and apply them to the nu(e) and (nu) over bar (e) induced reactions with the initial energy E = 8-80 MeV. We find that the total nu(e) cross sections on C-12 as well as on a nucleon in nuclear matter are reduced by about 5% at the nuclear saturation density, rho(0). This reduction is caused by the modification of the nucleon structure in matter. Although the density effect for both cases is relatively small, it is comparable with the effect of Coulomb distortion on the outgoing lepton in the nu-reaction. In contrast, the density effect on the (nu) over bar (e) reaction reduces the cross section significantly in both nuclear matter and C-12 cases, and the amount maximally becomes of about 35% around rho(0). Such large asymmetry in the nu(e) and (nu) over bar (e) cross sections, which seems to be nearly independent of the target, is originated from the differences in the helicities of (nu) over bar (e) and nu(e). It is expected that the asymmetry influences the r-process and also the neutrino-process nucleosynthesis in core-collapse supernovae.