摘要

In an organism, genes encode proteins, some of which in turn regulate other genes. Such interactions work in highly structured but incredibly complex ways, and make up a genetic regulatory network. Recently, nonlinear delay differential equations have been proposed for describing genetic regulatory networks in the state-space form. In this paper, we study stability properties of genetic regulatory networks with time delays, by the notion of delay-independent stability. We first present necessary and sufficient conditions for delay-independent local stability of genetic regulatory networks with a single time delay, and then extend the main result to genetic regulatory networks with multiple time delays. To illustrate the main theory, we analyze delay-independent stability of three genetic regulatory networks in E. coli or zebra fish. For E. coli, an autoregulatory network and a repressilatory network are analyzed. The results show that these two genetic regulatory networks with parameters in the physiological range are delay-independently robustly stable. For zebra fish, an autoregulatory network for the gene her1 is analyzed. The result shows that delay-independent stability of this network depends on the initial number of protein molecules, which is in agreement with the existing biological knowledge. The theories presented in this paper provide a very useful complement to the previous work and a framework for further studying the stability of more complex genetic regulatory networks.

  • 出版日期2009-2