摘要

Understanding the chronological changes in soil microbial and biochemical properties of tea orchard ecosystems after wasteland has been reclaimed is important from ecological, environmental, and management perspectives. In this study, we determined microbial biomass, net N mineralization, and nitrification, enzyme (invertase, urease, proteinase, and acid phosphatase) activities, microbial community diversity assessed by denaturing gradient gel electrophoresis (DGGE) of 16S rDNA polymerase chain reaction (PCR) products, and related ecological factors in three tea orchard systems (8-, 50-, and 90-year-old tea orchards), adjacent wasteland and 90-year-old forest. Soil microbial biomass C (C-mic) and activity, i.e., soil basal respiration (R-mic), microbial biomass C as a percent of soil organic C (C-mic/C-org), N mineralization, invertase, urease, proteinase, and acid phosphatase, significantly increased after wasteland was reclaimed, however, with the succeeding development of tea orchard ecosystems, a decreasing trend from the 50- to 90-year-old tea orchard became apparent. Soil net nitrification showed an increasing trend from the 8- to 50-year-old tea orchard and then a decreasing trend from the 50 to 90-year-old tea orchard, and was significantly higher in the tea orchards compared to the wasteland and forest. Urea application significantly stimulated soil net nitrification, indicating nitrogen fertilizer application may be an important factor leading to high-nitrification rates in tea orchard soils. The Shannon's diversity index (H) and richness (S) based on DGGE profiles of 16S rRNA genes were obviously lower in all three tea orchards than those in the wasteland; nevertheless, they were significantly higher in all three tea orchards than those in the forest. As for the three tea orchard soils, comparatively higher community diversity was found in the 50-year-old tea orchard.